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1 Introduction 
For the past two decades, the team behind SAS® EVAAS for K-12 has provided analytic services to 
educators and policymakers regarding the effectiveness of schooling practices. In the early years, 
focusing on students’ growth over time, rather than their initial achievement, represented a paradigm 
shift in identifying effective schooling and teaching. Furthermore, by following the progress of individual 
students over time, the analytics represented the philosophy that all students, regardless of their initial 
achievement, deserve to make appropriate academic progress each year. Today, the EVAAS services 
include value-added reports, individual student projections, diagnostic reports, and more, all available 
through an interactive web application. This document provides details on the statistical models used in 
the EVAAS value-added and projection analyses.  

It is important to keep in mind that there is not one, single EVAAS model used in all applications. There 
are multiple models implemented according to the objectives of the analyses, the characteristics and 
availability of the test data, and the policies and preferences of educators and policymakers. However, 
EVAAS typically uses two general types of value-added models, which are described conceptually and 
technically in this document.  

In addition to value-added modeling, EVAAS provides projected scores for individual students on tests 
the students have not yet taken. These tests may include state-mandated tests (end-of-grade tests, end-
of-course tests where available) as well as national tests such as college entrance exams (SAT and ACT). 
These projections can be used to predict a student’s future success (or lack of success) and may be used 
to guide counseling and intervention. 

Each of these analytic methodologies will be discussed in depth throughout the remainder of this 
document, which is organized as follows. 

 Section 2 describes the data requirements for value-added and projection reporting.

 Section 3 describes the value-added modeling approaches.

 Section 4 describes the projection modeling approach.
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2 Data Requirements 

2.1 Tests used by EVAAS 
EVAAS analyses can make use of a wide variety of assessments including, but not limited to, state 
criterion referenced tests, national norm referenced tests, college ready assessments, and even some 
locally developed state- or district-based tests, such as career and technical education or vocational 
tests. 

Tests are examined each year to determine if they are appropriate to use in a longitudinally linked 
analysis.  Scales must meet the three requirements described below to be used in all types of analysis 
done within EVAAS. Stretch and reliability are checked every year using the distribution of scale scores 
that are used each year.  

2.1.1 Stretch 

Stretch indicates whether the scaling of the test permits student growth to be measured for either very 
low- or very high-achieving students. A test “ceiling” or “floor” inhibits the ability to assess growth for 
students who would have otherwise scored higher or lower than the test allowed. There must be 
enough test scores at the high or low end of achievement for a measurable difference to be observed. 
Stretch can be determined by the percentage of students who score near the minimum or the maximum 
level for each assessment.  As an example, if a much larger percentage of students scored at the 
maximum in one grade compared to the prior grade, then it may seem that these students had negative 
growth at the very top of the scale. However, this is likely due to the artificial ceiling of the assessment.   

2.1.2 Relevance 

Relevance indicates whether the test is aligned with the curriculum. Tested material will correlate 
with standards if the assessments are designed to assess what students are expected to know and be 
able to do at each grade level. Generally, this is determined by the state or district implementing the 
assessments. 

2.1.3 Reliability 

Reliability can be viewed in a few different ways for assessments. Psychometricians view reliability as 
the idea that a student would receive similar scores if they took the assessment multiple times. 
Reliability also refers to the assessment’s scales across years. Both types of reliability are important 
when measuring growth. The first type of reliability is important for most any use of standardized 
assessments. The second type of reliability is very important when a base year is used to set the 
expectation of growth since this approach assumes that scale scores mean the same thing in a given 
subject and grade across years.  
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3 EVAAS Value-Added Models 
Conceptually, growth compares the entering achievement of a group of students to their current 
achievement. Value-added models measure the amount of growth a group of students is making and 
attributes it up to the district, school or teacher level. The value-added model compares the growth for 
that group to an expected amount of growth and can provide information as to whether there is 
statistical evidence that the group of students exceeded, met, or did not meet that expectation. 

In practice, growth must be measured using an approach that is sophisticated enough to accommodate 
many non-trivial issues associated with student testing data. Such issues include students with missing 
test scores, students with differing entering achievement, and measurement error in the test. EVAAS 
provides two general types of value-added models, each comprised of district-, school-, and teacher-
level reports. 

 Multivariate Response Model (MRM) can be used for tests given in consecutive grades, like the
math and reading tests often implemented in grades three through eight.

 Univariate Response Model (URM) is used when a test is given in non-consecutive grades, or it
can be used for any type of testing scenario.

Both models offer the following advantages: 

 The models include all of each student’s testing history without imputing any test scores.

 The models can accommodate students with missing test scores.

 The models can accommodate team teaching or other shared instructional practices.

 The models can use all years of student testing data to minimize the influence of measurement
error.

 The models can accommodate tests on different scales.

Each model is described in greater detail below throughout this section. 

The models described in this document only include student test scores as inputs. As a result of using all 
available test scores and including students, even if they have missing test scores, it is not necessary to 
make direct adjustments for students’ background characteristics. In short, each student serves as his or 
her own control and, to the extent that socioeconomic/demographic influences persist over time, these 
influences are already represented in the student’s data. In other words, while technically feasible, 
adjusting for student characteristics in sophisticated modeling approaches is not necessary from a 
statistical perspective. However, there are other policy considerations which may make this adjustment 
necessary, and this is possible with either modeling approach used by EVAAS. 

3.1 Multivariate Response Model (MRM) 
EVAAS provides three separate analyses using the MRM approach, one each for districts, schools, and 
teachers. The district and school models are essentially the same. They perform well with the large 
numbers of students that are characteristic of districts and most schools. The teacher model uses a 
different approach that is more appropriate with the smaller numbers of students typically found in 
teachers’ classrooms. All three models are statistical models known as linear mixed models and can be 
further described as multivariate, repeated-measures models. 

The MRM is a gain-based model, which means that it measures growth between two points in time for a 
group of students. The growth expectation is met when a cohort of students from grade to grade 
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maintains the same relative position with respect to statewide student achievement in that year for a 
specific subject and grade. 

The key advantages of the MRM approach can be summarized as follows: 

 All students with valid data are included in the analyses, even if they have missing test scores.
All of each student’s testing history is included without imputing any test scores.

 By including all students in the analyses, even those with a sporadic testing history, it provides
the most realistic estimate of achievement available.

 It minimizes the influence of measurement error inherent in academic assessments by using
multiple data points of student test history.

 It allows educators to benefit from all tests, even when tests are on differing scales.

 It accommodates teaching scenarios where more than one teacher has responsibility for a
student’s learning in a specific subject/grade/year.

 The model analyzes all consecutive grade subjects simultaneously to improve precision and
reliability.

Despite such rigor, conceptually, the MRM model is quite simple: did a group of students maintain the 
same relative position with respect to statewide student achievement from one year to the next for a 
specific subject and grade? 

3.1.1 MRM at the conceptual level 

An example data set with some description of possible value-added approaches may be helpful for 
conceptualizing how the MRM works. Assume that ten students are given a test in two different years 
with the results shown in Table 1 and 2. The goal is to measure academic growth (gain) from one year to 
the next. Two simple approaches are to calculate the mean of the differences or to calculate the 
differences of the means. When there is no missing data, these two simple methods provide the same 
answer (5.80 on the left in Table 1); however, when there is missing data, each method provides a 
different result (9.57 vs. 3.97 on the right in Table 2). A more sophisticated model is needed to address 
this problem. 
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Table 1: Scores without missing data Table 2: Scores with missing data 

Student 
Previous 

Score 
Current 
Score Gain Student 

Previous 
Score 

Current 
Score Gain 

1 51.9 74.8 22.9 1 51.9 

2 37.9 46.5 8.6 2 37.9 

3 55.9 61.3 5.4 3 55.9 61.3 5.4 

4 52.7 47.0 -5.7 4 52.7 47.0 -5.7 

5 53.6 50.4 -3.2 5 53.6 50.4 -3.2 

6 23.0 35.9 12.9 6 23.0 35.9 12.9 

7 78.6 77.8 -0.8 7 77.8 

8 61.2 64.7 3.5 8 64.7 

9 47.3 40.6 -6.7 9 47.3 40.6 -6.7 

10 37.8 58.9 21.1 10 37.8 58.9 21.1 

Mean 49.99 55.79 5.80 Mean 45.01 54.58 3.97 

Difference 5.80 Difference 9.57 

The MRM uses the correlation between current and previous scores in the non-missing data to estimate 
a mean for the set of all previous and all current scores as if there were no missing data. It does this 
without explicitly imputing values for the missing scores. The difference between these two estimated 
means is an estimate of the average gain for this group of students. In this small example, the estimated 
difference is 5.8. Even in a small example such as this, the estimated difference is much closer to the 
difference with no missing data than either measure obtained by the mean of the differences (9.57) or 
difference of the means (3.97). This method of estimation has been shown, on average, to outperform 
both of the simple methods.1 In this small example, there were only two grades and one subject. Larger 
data sets, such as those used in actual EVAAS analyses, provide better correlation estimates by having 
more student data, subjects, and grades, which in turn provide better estimates of means and gains. 

This small example is meant to illustrate the need for a model that will accommodate incomplete data 
and provide a reliable measure of progress. It represents the conceptual idea of what is done with the 
school and district models. The teacher model is slightly more complex, and all models are explained in 
more detail below (in Section 3.1.3). The first step in the MRM is to define the scores that will be used in 
the model. 

1 See, for example: Wright, S. P. (2004), “Advantages of a Multivariate Longitudinal Approach to Educational Value- Added Assessment Without 

Imputation,” Paper presented at National Evaluation Institute, on-line at http://www.createconference.org/documents/archive/2004/Wright-

NEI04.pdf. 
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3.1.2 Normal curve equivalents 

3.1.2.1 Why EVAAS uses normal curve equivalents in MRM 

The MRM estimates academic growth as a “gain,” or the difference between two measures of 
achievement from one point in time to the next. For such a difference to be meaningful, the two 
measures of achievement (that is, the two tests whose means are being estimated) must measure 
academic achievement on a common scale. Some test companies supply vertically scaled tests as a way 
to meet this requirement. A reliable alternative when vertically scaled tests are not available is to 
convert scale scores to normal curve equivalents (NCEs). 

NCEs are on a familiar scale because they are scaled to look like percentiles. However, NCEs have a 
critical advantage for measuring growth: they are on an equal-interval scale. This means that for NCEs, 
unlike percentile ranks, the distance between 50 and 60 is the same as the distance between 80 and 90. 
NCEs are constructed to be equivalent to percentile ranks at 1, 50, and 99, with the mean being 50 and 
the standard deviation being 21.063 by definition. Although percentile ranks are usually truncated 
below 1 and above 99, NCEs are allowed to range below zero and above 100 to preserve their equal-
interval property and to avoid truncating the test scale. Truncating would create an artificial ceiling or 
floor, and this could bias the results of the value-added measure for certain types of students by forcing 
the gain to be close to zero or even negative. 

The NCEs used in EVAAS analyses are typically based on a reference distribution, or the distribution of 
scores on a state-mandated test for all students in each year. By definition, the mean (or average) NCE 
score for the reference distribution is 50 for each grade and subject. “Growth” is the difference in NCEs 
from one year/grade to the next in the same subject. The growth standard, which represents a “normal” 
year’s growth, is defined by a value of zero. More specifically, it maintains the same position in the 
reference distribution from one year/grade to the next. 

It is important to reiterate that a gain of zero on the NCE scale does not indicate “no growth.” Rather, it 
indicates that a group of students in a district, school, or classroom has maintained the same position in 
the state distribution from one grade to the next. The expectation of growth can be set differently: 
either by using a specific year’s reference distribution to create NCEs or by using each individual year to 
create NCEs. For more on the Growth Expectation, see Section 3.3. 

3.1.2.3 How EVAAS models use normal curve equivalents in MRM 

There are multiple ways of creating NCEs. EVAAS uses a method that does not assume the underlying 
scale is normal since experience has shown that some testing scales are not normally distributed and 
not assuming normality will ensure an equal-interval scale. Table 3 provides an example of the way that 
EVAAS converts scale scores to NCEs. 

The first five columns of Table 3 show an example of a tabulated distribution of test scores from a 
sample set of data. The tabulation shows, for each possible test score, in a particular subject, grade, and 
year, how many students made that score (“Frequency”) and what percent (“Percent”) that frequency 
was out of the entire student population (in Table 3 the total number of students is approximately 
130,000). Also tabulated are the cumulative frequency (“Cum Freq”), which is the number of students 
who made that score or lower, and its associated percentage (“Cum Pct”). 

The next step is to convert each score to a percentile rank, listed as “Ptile Rank” on the right side of 
Table 3. If a particular score has a percentile rank of 48, this is interpreted to mean that 48% of students 
in the population had a lower score and 52% had a higher score. In practice, a non-zero percentage of 
students will receive each specific score. For example, 3.4% of students received a score of 425 in Table 
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3. The usual convention is to consider half of that 3.4% to be “below” and half “above.” Adding 1.7%
(half of 3.4%) to the 43.5% who scored below the score of 425 produces the percentile rank of 45.2 in
Table 3.

Table 3: Converting tabulated test scores to NCE values 

Score Frequency Cum Freq Percent Cum Pct Ptile Rank Z NCE 

418 3,996 48,246 3.1 36.9 35.4 -0.375 42.10 

420 4,265 52,511 3.3 40.2 38.5 -0.291 43.86 

423 4,360 56,871 3.3 43.5 41.8 -0.206 45.66 

425 4,404 61,275 3.4 46.9 45.2 -0.121 47.45 

428 4,543 65,818 3.5 50.4 48.6 -0.035 49.26 

430 4,619 70,437 3.5 53.9 52.1 0.053 51.12 

432 4,645 75,082 3.6 57.5 55.7 0.142 53.00 

NCEs are obtained from the percentile ranks using the normal distribution. Using a table of the standard 
normal distribution (found in many textbooks) or computer software (for example, a spreadsheet), one 
can obtain, for any given percentile rank, the associated Z-score from a standard normal distribution. 
NCEs are Z-scores that have been rescaled to have a “percentile-like” scale. Specifically, NCEs are scaled 
so that they exactly match the percentile ranks at 1, 50, and 99. This is accomplished by multiplying each 
Z-score by approximately 21.063 (the standard deviation on the NCE scale) and adding 50 (the mean on
the NCE scale).

An alternative to normalization (using NCEs) that is sometimes suggested is "standardization." 
Standardized scores are scores that have been rescaled to have a mean of zero and a standard deviation 
of one. Just as with NCEs, scores could be standardized each year separately or to a base year. Just as for 
NCEs, a gain of zero represents maintaining that same relative position in student achievement but only 
for the average student. If the distributions of the two scores making up the gain have different shapes, 
then for students who are not average, maintaining the same relative position in student achievement 
may be represented by a gain of greater or less than zero. If the two distributions are both normal, then 
standardization produces the same results as normalization. In contrast, with NCEs a gain of zero 
represents maintaining the same relative position in student achievement for every student, no matter 
where in the distribution their score falls. It is for this reason, along with the familiarity of the NCE scale, 
that EVAAS analyses use NCE scores. 

3.1.3 Technical description of the linear mixed model and the MRM 

The linear mixed model for district, school, and teacher value-added reporting using the MRM approach 
is represented by the following equation in matrix notation: 

𝑦 = 𝑋𝛽 + 𝑍𝑣 + 𝜖 (1) 

𝑦 (in the EVAAS context) is the 𝑚 × 1 observation vector containing test scores (usually NCEs) for all 
students in all academic subjects tested over all grades and years. 

𝑋 is a known 𝑚 × 𝑝 matrix that allows the inclusion of any fixed effects. 

𝛽 is an unknown 𝑝 × 1 vector of fixed effects to be estimated from the data. 

𝑍 is a known 𝑚 × 𝑞 matrix that allows for the inclusion of random effects. 
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𝑍𝑍 is a non-observable 𝑞𝑞 × 1 vector of random effects whose realized values are to be estimated from 
the data. 

𝜖𝜖 is a non-observable 𝑚𝑚 × 1 random vector variable representing unaccountable random variation. 

Both 𝑍𝑍 and 𝜖𝜖 have means of zero, that is, 𝐸𝐸(𝑍𝑍 =  0) and 𝐸𝐸(𝜖𝜖 =  0). Their joint variance is given by: 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝑍𝑍𝜖𝜖� = �𝐺𝐺 0
0 𝑅𝑅�

(2) 

where 𝑅𝑅 is the 𝑚𝑚 × 𝑚𝑚 matrix that reflects the correlation among the student scores residual to the 
specific model being fitted to the data, and 𝐺𝐺 is the 𝑞𝑞 × 𝑞𝑞 variance-covariance matrix that reflects the 
correlation among the random effects. If (𝑍𝑍, 𝜖𝜖) are normally distributed, the joint density of (𝑦𝑦, 𝑍𝑍) is 
maximized when 𝑋𝑋 has value 𝑏𝑏 and 𝑍𝑍 has value 𝑢𝑢 given by the solution to the following equations, 
known as Henderson’s mixed model equations (Sanders et al., 1997): 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍 + 𝐺𝐺−1
� �𝑏𝑏𝑢𝑢� = �𝑋𝑋

𝑇𝑇𝑅𝑅−1𝑦𝑦
𝑍𝑍𝑇𝑇𝑅𝑅−1𝑦𝑦

� (3) 

Let a generalized inverse of the above coefficient matrix be denoted by: 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍 + 𝐺𝐺−1
�
−

= �𝐶𝐶11 𝐶𝐶12
𝐶𝐶21 𝐶𝐶22

� = 𝐶𝐶 (4) 

If 𝐺𝐺 and 𝑅𝑅 are known, then some of the properties of a solution for these equations are: 

1. Equation (5) below provides the best linear unbiased estimator (BLUE) of the set of estimable
linear function,𝐾𝐾𝑇𝑇𝑋𝑋, of the fixed effects. The second equation (6) below represents the variance
of that linear function. The standard error of the estimable linear function can be found by
taking the square root of this quantity.

𝐸𝐸(𝐾𝐾𝑇𝑇𝑋𝑋) = 𝐾𝐾𝑇𝑇𝑏𝑏 (5) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇𝑏𝑏) = (𝐾𝐾𝑇𝑇)𝐶𝐶11𝐾𝐾 (6) 

2. Equation (7) below provides the best linear unbiased predictor (BLUP) of 𝑍𝑍. 

𝐸𝐸(𝑍𝑍|𝑢𝑢) = 𝑢𝑢 (7) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢 − 𝑍𝑍) = 𝐶𝐶22 (8) 

where 𝑢𝑢 is unique regardless of the rank of the coefficient matrix. 

3. The BLUP of a linear combination of random and fixed effects can be given by equation (9)
below provided that 𝐾𝐾𝑇𝑇𝑋𝑋 is estimable. The variance of this linear combination is given by
equation (10).

𝐸𝐸(𝐾𝐾𝑇𝑇𝑋𝑋 + 𝑀𝑀𝑇𝑇𝑍𝑍 |𝑢𝑢) = 𝐾𝐾𝑇𝑇𝑏𝑏 + 𝑀𝑀𝑇𝑇𝑢𝑢 (9) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇(𝑏𝑏 −  𝑋𝑋) + 𝑀𝑀𝑇𝑇(𝑢𝑢 − 𝑍𝑍)) = (𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝐶𝐶(𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝑇𝑇 (10) 

4. With G and R known, the solution for the fixed effects is equivalent to generalized least squares,
and if v and ϵ are multivariate normal, then the solutions for β and v are maximum likelihood.

5. If 𝐺𝐺 and 𝑅𝑅 are not known, then as the estimated 𝐺𝐺 and 𝑅𝑅 approach the true 𝐺𝐺 and 𝑅𝑅, the
solution approaches the maximum likelihood solution.



6. If 𝑣 and 𝜖 are not multivariate normal, then the solution to the mixed model equations still
provides the maximum correlation between 𝑣 and 𝑢.

3.1.3.1 District and school level 

The district and school MRMs do not contain random effects; consequently, in the linear mixed model, 
the 𝑍𝑣 term drops out. The 𝑋 matrix is an incidence matrix (a matrix containing only zeros and ones) 
with a column representing each interaction of school (in the school model), subject, grade, and year of 
data. The fixed-effects vector 𝛽 contains the mean score for each school, subject, grade, and year, with 
each element of 𝛽 corresponding to a column of 𝑋. Note that, since MRMs are generally run with each 
school uniquely defined across districts, there is no need to include district in the school model. 

Unlike the case of the usual linear model used for regression and analysis of variance, the elements of 𝜖 
are not independent. Their interdependence is captured by the variance-covariance matrix, also known 
as the 𝑅 matrix. Specifically, scores belonging to the same student are correlated. If the scores in 𝑦 are 
ordered so that scores belonging to the same student are adjacent to one another, then the 𝑅 matrix is 
block diagonal with a block, 𝑅𝑖, for each student. Each student’s 𝑅𝑖 is a subset of the “generic” 
covariance matrix 𝑅0 that contains a row and column for each subject and grade. Covariances among 
subjects and grades are assumed to be the same for all years (technically, all cohorts), but otherwise the 
𝑅0 matrix is unstructured. Each student’s 𝑅𝑖  contains only those rows and columns from 𝑅0 that match 
the subjects and grades for which the student has test scores. In this way, the MRM is able to use all 
available scores from each student. 

Algebraically, the district MRM is represented as: 

𝑦𝑖𝑗𝑘𝑙𝑑 = 𝜇𝑗𝑘𝑙𝑑 + 𝜖𝑖𝑗𝑘𝑙𝑑 (11) 

where 𝑦𝑖𝑗𝑘𝑙𝑑  represents the test score for the 𝑖𝑡ℎ student in the 𝑗𝑡ℎ subject in the 𝑘𝑡ℎ grade during the

𝑙𝑡ℎ year in the 𝑑𝑡ℎ district. 𝜇𝑖𝑗𝑘𝑙𝑑 is the estimated mean score for this particular district, subject, grade,

and year. 𝜖𝑖𝑗𝑘𝑙𝑑  is the random deviation of the 𝑖𝑡ℎ student’s score from the district mean.

The school MRM is represented as: 

𝑦𝑖𝑗𝑘𝑙𝑠 = 𝜇𝑗𝑘𝑙𝑠 + 𝜖𝑖𝑗𝑘𝑙𝑠 (12) 

This is the same as the district analysis with the replacement of subscript 𝑑 with subscript 𝑠 representing 

the 𝑠𝑡ℎ school. 

The MRM uses the data for the up to the most recent eight years each year to estimate the covariances 
that can be found in the matrix 𝑅0. This estimation of covariances is done within each level of analyses 
and can result in slightly different values within each analysis. 

Solving the mixed model equations for the district or school MRM produces a vector 𝑏 that contains the 
estimated mean score for each school (in the school model), subject, grade, and year. To obtain a value-
added measure of average student growth, a series of computations can be done using the students 
from a school in a particular year and all of their prior year schools. Because students may change 
schools from one year to the next (in particular when transitioning from elementary to middle school, 
for example), the estimated mean score for the prior year/grade utilizes a weighted average of schools 
that sent students into the school, grade, subject, and year in question. Prior year schools are not 
typically utilized if they send students in very small amounts (less than five) since those students likely 
do not represent the overall achievement of the school that they are coming from. For certain schools 
with very large rates of mobility, the estimated mean for the prior year/grade only includes students 
who existed in the current year. Mobility is taken into account within the model so that growth of 



students is computed using all students in each school, including those that may have moved buildings 
from one year to the next. 

The computation for obtaining a growth measure can be thought of as a linear combination of fixed 
effects from the model. The best linear unbiased estimate for this linear combination is given by 
equation (5). The growth measures are reported along with standard errors, and these can be obtained 
by taking the square root of equation (6). 

Furthermore, in addition to reporting the estimated mean scores and mean gains produced by these 
models, the value-added reporting can include (1) cumulative gains across grades (for each subject and 
year) and (2) multi-year average gains (up to three years for each subject and grade). In general, these 
are all different forms of linear combinations of the fixed effects, and their estimates and standard 
errors are computed in the same manner described above. 

3.1.3.2 Teacher-level 

The teacher estimates use a more conservative statistical process to lessen the likelihood of 
misclassifying teachers. Each teacher is assumed to be the state or district average in a specific year, 
subject, and grade until the weight of evidence pulls him or her above or below that average. 
Furthermore, the teacher model is a “layered” model, which means that: 

 The model incorporates current and previous teacher effects.

 Each teacher estimate takes into account all the students’ testing data over the years.

 The model incorporates the percentage of instructional responsibility that a teacher has for
each student (to accommodate scenarios such as team teaching).

Each of these elements of the statistical model for teacher value-added modeling provides a layer of 
protection against misclassifying each teacher estimate. 

To allow for the possibility of many teachers with relatively few students per teacher, MRM enters 
teachers as random effects via the 𝑍 matrix in the linear mixed model. The 𝑋 matrix contains a column 
for each subject/grade/year, and the 𝑏 vector contains an estimated state or district mean score for 
each subject/grade/year. The 𝑍 matrix contains a column for each subject/grade/year/teacher, and the 
𝑢 vector contains an estimated teacher effect for each subject/grade/year/teacher. The 𝑅 matrix is as 
described above for the district or school model. The 𝐺 matrix contains teacher variance components, 
with a separate unique variance component for each subject/grade/year. To allow for the possibility 
that a teacher may be very effective in one subject and very ineffective in another, the 𝐺 matrix is 
constrained to be a diagonal matrix. Consequently, the 𝐺 matrix is a block diagonal matrix with a block 
for each subject/grade/year. Each block has the form 𝜎2

𝑗𝑘𝑙𝐼 where 𝜎2
𝑗𝑘𝑙 is the teacher variance

component for the 𝑗𝑡ℎ subject in the 𝑘𝑡ℎ grade in the 𝑙𝑡ℎ year, and 𝐼 is an identity matrix. 

Algebraically, the teacher model is represented as: 

𝑦𝑖𝑗𝑘𝑙 =  𝜇𝑗𝑘𝑙 + ( ∑

𝑘∗≤𝑘

∑ 𝑤𝑖𝑗𝑘∗𝑙∗𝑡  ×  𝜏𝑖𝑗𝑘∗𝑙∗𝑡

𝑇𝑖𝑗𝑘∗𝑙∗

𝑡=1

) + 𝜖𝑖𝑗𝑘𝑙  (13) 

𝑦𝑖𝑗𝑘𝑙  is the test score for the 𝑖𝑡ℎ student in the 𝑗𝑡ℎ subject in the 𝑘𝑡ℎgrade in the 𝑙𝑡ℎ year. 𝜏𝑖𝑗𝑘∗𝑙∗𝑡 is the

teacher effect of the 𝑡𝑡ℎ  teacher on the 𝑖𝑡ℎ student in the 𝑗𝑡ℎ subject in grade 𝑘∗ in year 𝑙∗.  



The complexity of the parenthesized term containing the teacher effects is due to two factors. First, in 
any given subject/grade/year, a student may have more than one teacher. The inner (rightmost) 

summation is over all the teachers of the 𝑖𝑡ℎ student in a particular subject/grade/year. 𝜏𝑖𝑗𝑘∗𝑙∗𝑡 is the

effect of the 𝑡𝑡ℎ teacher. 𝑤𝑖𝑗𝑘∗𝑙∗𝑡 is the fraction of the 𝑖𝑡ℎ student’s instructional time claimed by the 𝑡𝑡ℎ

teacher. Second, as mentioned above, this model allows teacher effects to accumulate over time. That 
is, how well a student does in the current subject/grade/year depends not only on the current teacher 
but also on the accumulated knowledge and skills acquired under previous teachers. The outer 
(leftmost) summation accumulates teacher effects not only for the current (subscripts 𝑘 and 𝑙) but also 
over previous grades and years (subscripts 𝑘∗ and 𝑙∗) in the same subject. Because of this accumulation 
of teacher effects, this type of model is often called the “layered” model. 

In contrast to the model for many district and school estimates, the value-added estimates for teachers 
are not calculated by taking differences between estimated mean scores to obtain mean gains. Rather, 
this teacher model produces teacher “effects” (in the 𝑢 vector of the linear mixed model). It also 
produces, in the fixed-effects vector 𝑏, state-level or district-level mean scores (for each year, subject 
and grade). Because of the way the 𝑋 and 𝑍 matrices are encoded, in particular because of the 
“layering” in 𝑍, teacher gains can be estimated by adding the teacher effect to the state or district mean 
gain. That is, the interpretation of a teacher effect in this teacher model is as a gain, expressed as a 
deviation from the average gain for the state in a given year, subject, and grade. 

Table 4 illustrates how the 𝑍 matrix is encoded for three students who have three different scenarios of 
teachers during grades three, four, and five in two subjects, math (M) and reading (R). Teachers are 
identified by the letters A–F. 

Tommy’s teachers represent the conventional scenario: Tommy is taught by a single teacher in both 
subjects each year (teachers A, C, and E in grades three, four, and five, respectively). Notice that in 
Tommy’s 𝑍 matrix rows for grade four, there are ones (representing the presence of a teacher effect) 
not only for fourth grade teacher C but also for third grade teacher A. This is how the “layering” is 
encoded. Similarly, in the grade five rows, there are ones for grade five teacher E, grade four teacher C, 
and grade three teacher A. 

Susan is taught by two different teachers in grade three, teacher A for math and, teacher B for reading. 
In grade four, Susan had teacher C for reading. For some reason in grade four, no teacher claimed Susan 
for math even though Susan had a grade four math test score. This score can still be included in the 
analysis by entering zeroes into the Susan’s 𝑍 matrix rows for grade four math. In grade five, on the 
other hand, Susan had no test score in reading. This row is completely omitted from the 𝑍 matrix. There 
will always be a 𝑍 matrix row corresponding to each test score in the 𝑦 vector. Since Susan has no entry 
in 𝑦 for grade five reading, there can be no corresponding row in 𝑍. 

Eric’s scenario illustrates team teaching. In grade three reading, Eric received an equal amount of 
instruction from both teachers A and B. The entries in the 𝑍 matrix indicate each teacher’s contribution, 
0.5 for each teacher. In grade five math, however, while Eric was taught by both teachers E and F, they 
did not make an equal contribution. Teacher E claimed 80% responsibility, and teacher F claimed 20%. 

Because teacher effects are treated as random effects in this approach, their estimates are obtained by 
shrinkage estimation, technically known as best linear unbiased prediction or as empirical Bayesian 
estimation. This means that a priori a teacher is considered to be “average” (with a teacher effect of 
zero) until there is sufficient student data to indicate otherwise. This method of estimation protects 
against false positives (teachers incorrectly evaluated as effective) and false negatives (teachers 
incorrectly evaluated as ineffective), particularly in the case of teachers with few students. 



From the computational perspective, the teacher gain can be defined as a linear combination of both 
fixed effects and random effects and is estimated by the model using equation (9). The variance and 
standard error can be found using equation (10). As described in the district/school section, the teacher 
value-added reporting can include (1) cumulative gains across grades (for each subject and year) and (2) 
multi-year average gains (up to three years for each subject and grade). In general, these are all 
different forms of linear combinations of the fixed effects, and their estimates and standard errors are 
computed in the same manner described above. 

Table 4: Encoding the Z matrix 

Teachers 

Third Grade Fourth Grade Fifth Grade 

A B C D E F 

Student Grade Subjects M R M R M R M R M R M R 

Tommy 3 M 1 0 0 0 0 0 0 0 0 0 0 0 

R 0 1 0 0 0 0 0 0 0 0 0 0 

4 M 1 0 0 0 1 0 0 0 0 0 0 0 

R 0 1 0 0 0 1 0 0 0 0 0 0 

5 M 1 0 0 0 1 0 0 0 1 0 0 0 

R 0 1 0 0 0 1 0 0 0 1 0 0 

Susan 3 M 1 0 0 0 0 0 0 0 0 0 0 0 

R 0 0 0 1 0 0 0 0 0 0 0 0 

4 M 1 0 0 0 0 0 0 0 0 0 0 0 

R 0 0 0 1 0 1 0 0 0 0 0 0 

5 M 1 0 0 0 0 0 0 0 0 0 1 0 

Eric 3 M 1 0 0 0 0 0 0 0 0 0 0 0 

R 0 0.5 0 0.5 0 0 0 0 0 0 0 0 

4 M 1 0 0 0 0 0 1 0 0 0 0 0 

R 0 0.5 0 0.5 0 0 0 1 0 0 0 0 

5 M 1 0 0 0 0 0 1 0 0.8 0 0.2 0 

R 0 0.5 0 0.5 0 0 0 1 0 1 0 0 

3.2 Univariate Response Model (URM) 
Tests that are not given for consecutive years require a different modeling approach from the MRM, and 
this modeling approach is called the univariate response model (URM). This approach can be used for 
tests given in consecutive grades too. The statistical model can also be classified as a linear mixed model 
and can be further described as an analysis of covariance (ANCOVA) model. The URM is a regression-
based model, which measures the difference between students’ predicted scores for a particular 
subject/year with their observed scores. The growth expectation is met when students with a 
district/school/teacher made the same amount of progress as students in the average 
district/school/teacher with the state for that same year/subject/grade. If not all teachers were 
administering a particular test in the state, then it would be compared to the average of those teachers 
with students taking that assessment. 



The key advantages of the URM approach can be summarized as follows: 

 It does not require students to have all predictors or the same set of predictors, so long as a
student has at least three prior test scores in any subject/grade.

 It minimizes the influence of measurement error by using all prior data for an individual student.
Analyzing all subjects simultaneously increases the precision of the estimates.

 It allows educators to benefit from all tests, even when tests are on differing scales.

 It accommodates teaching scenarios where more than one teacher has responsibility for a
student’s learning in a specific subject/grade/year.

3.2.1 URM at the conceptual level 

The URM is run for each individual year, subject and grade (if relevant). Consider all students who took 
grade eight science in a given year. Those students are connected to all of their prior testing history (all 
grades, subjects, and years), and the relationship between the observed grade eight science scores with 
all prior test scores is examined. It is important to note that some prior test scores are going to have a 
greater relationship to the score in question than others. For instance, it is likely that prior science tests 
will have a greater relationship with science than prior reading scores. However, the other scores do still 
have a statistical relationship. 

Once that relationship has been defined, a predicted score can be calculated for each individual student 
based on his or her own prior testing history. Of course, some prior scores will have more influence than 
others in predicting certain scores based on the observed relationship across the state or testing pool in 
a given year. With each predicted score based on a student’s prior testing history, this information can 
be aggregated to the district, school, or teacher level. The predicted score can be thought of as the 
entering achievement of a student. 

The measure of growth is a function of the difference between the observed (most recent) scaled scores 
and predicted scaled scores of students associated with each district, school, or teacher. If students at a 
school typically outperform their individual growth expectation, then that school will likely have a larger 
value-added measure. Zero is defined as the average district, school, or teacher in terms of the average 
progress, so that if every student obtained their predicted score, a district, school, or teacher would 
likely receive a value-added measure close to zero. A negative or zero value does not mean “zero 
growth” since this is all relative to what was observed in the state (or pool) that year. 

3.2.2 Technical description of the district, school and teacher models 

The URM has similar models for district and school and a slightly different model for teachers that 
allows multiple teachers to share instructional responsibility. The statistical details for the teacher 
model are outlined below. 

In this model, the score to be predicted serves as the response variable (𝑦), the dependent variable), 
the covariates (𝑥’s, predictor variables, explanatory variables, independent variables) are scores on tests 
the student has already taken, and the categorical variable (class variable, factor) are the teacher(s) 
from whom the student received instruction in the subject/grade/year of the response variable (𝑦). For 
the district and school models, the categorical variable would be the district or school. Algebraically, the 

model can be represented as follows for the 𝑖𝑡ℎ student when there is no team teaching. 

𝑦𝑖 =  𝜇𝑦 +  𝛼𝑗 + 𝛽1(𝑥𝑖1 − 𝜇1) + 𝛽2(𝑥𝑖2 − 𝜇2) + ⋯ +  𝜖𝑖  (14) 



In the case of team teaching, the single 𝛼𝑗 is replaced by multiple 𝛼’s, each multiplied by an appropriate 

weight, similar to the way this is handled in the teacher MRM in equation (13). The 𝜇 terms are means 

for the response and the predictor variables. 𝛼𝑗 is the teacher effect for the 𝑗𝑡ℎ teacher, the teacher

who claimed responsibility for the 𝑖𝑡ℎ student. The 𝛽 terms are regression coefficients. Predictions to 
the response variable are made by using this equation with estimates for the unknown parameters (𝜇′s, 

𝛽′s, sometimes 𝛼𝑗). The parameter estimates (denoted with “hats,” e.g., �̂�, �̂�) are obtained using all of 

the students that have an observed value for the specific response and have three predictor scores. The 

resulting prediction equation for the 𝑖𝑡ℎ student is as follows: 

�̂�𝑖 =  �̂�𝑦 + �̂�1(𝑥𝑖1 − �̂�1) + �̂�2(𝑥𝑖2 −  �̂�2) + ⋯ (15) 

Two difficulties must be addressed in order to implement the prediction model. First, not all students 
will have the same set of predictor variables due to missing test scores. Second, the estimated 
parameters are pooled-within-teacher estimates. The strategy for dealing with missing predictors is to 
estimate the joint covariance matrix (call it 𝐶) of the response and the predictors. Let 𝐶 be partitioned 
into response (𝑦) and predictor (𝑥) partitions, that is: 

𝐶 =  [
𝑐𝑦𝑦 𝑐𝑦𝑥

𝑐𝑥𝑦 𝐶𝑥𝑥
] (16) 

Note that C in equation (16) is not the same as C in equation (4). This matrix is estimated using an EM 
algorithm for estimating covariance matrices in the presence of missing data such as the one provided 
by the MI procedure in SAS/STAT®, but modified to accommodate the nesting of students within 
teachers. Only students who had a test score for the response variable in the most recent year and who 
had at least three predictor variables are included in the estimation. Given such a matrix, the vector of 
estimated regression coefficients for the projection equation (15) can be obtained as: 

�̂� =  𝐶𝑥𝑥
−1𝑐𝑥𝑦 (17) 

This allows one to use whichever predictors a particular student has to get that student’s projected 𝑦-
value (�̂�𝑖). Specifically, the 𝐶𝑥𝑥 matrix used to obtain the regression coefficients for a particular student 
is that subset of the overall 𝐶 matrix that corresponds to the set of predictors for which this student has 
scores. 

The prediction equation also requires estimated mean scores for the response and for each predictor 
(the �̂� terms in the prediction equation). These are not simply the grand mean scores. It can be shown 
that in an ANCOVA, if one imposes the restriction that the estimated teacher effects should sum to zero 
(that is, the teacher effect for the “average teacher” is zero), then the appropriate means are the means 
of the teacher-level means. The teacher-level means are obtained from the EM algorithm, mentioned 
above, which takes into account missing data. The overall means (�̂� terms) are then obtained as the 
simple average of the teacher-level means. 

Once the parameter estimates for the prediction equation have been obtained, predictions can be made 
for any student with any set of predictor values, so long as that student has a minimum of three prior 
test scores. 

�̂�𝑖 =  �̂�𝑦 + �̂�1(𝑥𝑖1 − �̂�1) + �̂�2(𝑥𝑖2 −  �̂�2) + ⋯ (18) 

The �̂�𝑖  term is nothing more than a composite of all the student’s past scores. It is a one-number 
summary of the student’s level of achievement prior to the current year. The different prior test scores 

making up this composite are given different weights (by the regression coefficients, the �̂�’s) in order to 



maximize its correlation with the response variable. Thus a different composite would be used when the 
response variable is math than when it is reading, for example. Note that the �̂�𝑗 term is not included in 

the equation. Again, this is because �̂�𝑖  represents prior achievement, before the effect of the current 
district, school, or teacher. To avoid bias due to measurement error in the predictors, composites are 
obtained only for students who have at least three prior test scores. 

The second step in the URM is to estimate the teacher effects (𝛼𝑗) using the following ANCOVA model: 

𝑦𝑖 =  𝛾0 + 𝛾1�̂�𝑖 + 𝛼𝑗 + 𝜖𝑖 (19) 

In the URM model, the effects (𝛼𝑗) are considered to be random effects. Consequently the �̂�𝑗’s are 

obtained by shrinkage estimation (empirical Bayes). The regression coefficients for the ANCOVA model 
are given by the 𝛾’s. 

3.3 Growth Expectations in Value-added Analyses 
Conceptually, growth compares the entering achievement of students to the current achievement. 
Value-added models measure the amount of growth a group of students is making and attributes it to 
the district, school, or teacher level. The value-added measure compares that growth of a group of 
students to an expected amount of growth, and it is very important to define that expectation. 

Mathematically, the “expected” growth is typically set at zero, such that positive gains or effects are 
evidence that students made more than the expected progress and negative gains or effects are 
evidence that students made less than the expected progress. 

However, the definition of “expected growth” varies by model, and the precise definition depends on 
the selected model and state or district preference, and this section provides more details on the 
options and selections for defining expected growth. Generally, expected growth can be defined as 
either a “base year” or an “intra-year” approach. Base year refers to a growth expectation that is based 
on a particular year, say 2006, and any growth in the current year will be compared to the distribution of 
student scores in the base year. Intra-year refers to a growth expectation that is always based on the 
current year (2012 for 2012 growth estimates, 2013 for 2013 growth estimates, and so on). 

3.3.1 Base year approach 

3.3.1.1 Description 

The base year growth expectation is based on a cohort of students moving from grade to grade and 
maintaining the same relative position with respect to the statewide student achievement in the base 
year for a specific subject and grade. 

As a simplified example, if students’ achievement was at the 50th NCE in 2006 grade four math, based on 
the 2006 grade four math scale score distribution, and at the 52nd NCE in 2007 grade five, based on the 
2006 grade five math scale score distribution, then their estimated mean gain is 2 NCEs. 

The key feature is that, in theory, all educational entities could exceed or fall short of the growth 
expectation (or standard) in a particular subject/grade/year, and the distribution of entities that are 
considered above or below could change over time. 

Following the implementation of any new assessments and changes in academic standards, the base 
year should be reset to an intra-year approach in order to accommodate the differences between the 
old and new testing regimes and minimize any impact on the value-added reporting. To be more 
specific, use of the intra-year approach is required if there is no mapping from the old assessment’s 



scale to the new assessment’s scale. However, even if that mapping does exist, the intra-year approach 
should be used to prevent any unusual swings in value-added measures. If a base year approach is 
desired after the transition, it is recommended that the new base year be selected after the second year 
of the new assessment, at a minimum, and only be reset when the smooth transition can be verified. 

3.3.1.2 Illustrated example 

The graphic below (Graph 1) provides a simplified example of how growth is calculated with a base year 
approach when the state achievement increases. The graphic below has four graphs, each of which plot 
the NCE distribution of scale scores for a given year and grade. In this example, the base year is 2014, 
and the graphic shows how the gain is calculated for a group of 2014 grade four students as they 
become 2015 grade five students. In 2014, our grade four students score, on average, 420 scale score 
points on the test, which corresponds to the 50th NCE (similar to the 50th percentile). In 2015, the 
students score, on average, 434 scale score points on the test, which corresponds to a 52nd NCE based 
on the 2014 grade five distribution of scores. The 2015 grade five distribution of scale scores was higher 
than the 2014 grade five distribution of scale scores, which is why the lower right-hand graph is shifted 
slightly to the right. The blue line shows what is required for students to make expected growth, which 
would maintain their position at the 50th NCE in 2014 grade four as they become 2015 grade five 
students. The growth measure for these students is 2015 NCE – 2014 NCE, which would be 52 – 50 = 2. 
Similarly, if a group of students started out at the 35th NCE in 2014 grade four and then moved their 
position to the 37th NCE in 2015 grade five, they would have a gain of two NCEs as well. 

Please note that the actual gain calculations are much more robust than what is presented here; as 
described in the previous section, the models can address students with missing data, team teaching 
and all available testing history. This illustration simply provides the basic concept. 

Graph 1: Illustrated example of base year approach 

3.3.2 Intra-year approach 

3.3.2.1 Description 

This approach will be used in the MRM reporting during the transition to new assessments and the 
concept is always used in the URM reporting. The actual definitions in each model are slightly different, 



but the concept can be considered as the average amount of progress seen across the state in a 
statewide implementation. 

Using the URM model the definition of the expectation is that students with a district, school, or teacher 
made the same amount of progress as students with the average district, school, or teacher in the state 
for that same year/subject/grade. If not all students are taking an assessment in the state, then it may 
be a subset. 

Using the MRM model, the definition of this type of expectation of growth is that students maintained 
the same relative position with respect to the statewide student achievement from one year to the next 
in the same subject area. As an example, if students’ achievement was at the 50th NCE in 2014 grade 
four math, based on the 2014 grade four math statewide distribution of student achievement, and their 
achievement is at the 50th NCE in 2015 grade five math, based on the 2015 grade five math statewide 
distribution of student achievement, then their estimated gain is 0.0 NCEs. 

With this approach, the value-added measures tend to be centered on the growth expectation every 
year, with approximately half of the district/school/teacher estimates above zero and approximately 
half of the district/school/teacher estimates below zero. This does not mean half would be in the 
positive and negative categories since many value-added measures are indistinguishable from the 
expectation when considering the statistical certainty around that measure. 

3.3.2.2 Illustrated example 

The graphic below (Graph 2) provides a simplified example of how growth is calculated with an intra-
year approach when the state or pool achievement increases using the MRM methodology. The graphic 
below has four graphs, each of which plot the NCE distribution of scale scores for a given year and 
grade. In this example, the first year is 2014, and the graphic shows how the gain is calculated for a 
group of 2014 grade four students as they become 2015 grade five students. In 2014, our grade four 
students score, on average, 420 scale score points on the test, which corresponds to the 50th NCE 
(similar to the 50th percentile). In 2015, the students score, on average, 434 scale score points on the 
test, which corresponds to a 50th NCE based on the 2015 grade five distribution of scores. The 2015 
grade five distribution of scale scores was higher than the 2014 grade five distribution of scale scores, 
which is why the lower right-hand graph is shifted slightly to the right. The blue line shows what is 
required for students to make expected growth, which would maintain their position at the 50th NCE in 
2014 grade four as they become 2015 grade five students. The growth measure for these students is 
2015 NCE – 2014 NCE, which would be 50 – 50 = 0. Similarly, if a group of students started at the 35th 
NCE, the expectation is that they would maintain that 35th NCE. 

Please note that the actual gain calculations are much more robust than what is presented here. As 
described in the previous section, the models can address students with missing data, team teaching, 
and all available testing history. 



Graph 2: Illustrated example of intra-year approach 

3.3.3 Defining the expectation of growth during an assessment change 

During the change of assessments, the scales from one year to the next will be completely different 
from one another. This does not present any particular challenges with the URM methodology because 
all predictors in this approach are already on different scales from the response variable, so the 
transition is no different from a scaling perspective. Of course, there will be a need for the predictors to 
be adequately related to the response variable of the new assessment, but that typically is not an issue. 
With the MRM methodology, the scales from one year to the next can be completely different from one 
another with the intra-year approach. This method converts any scale to a relative position and can be 
used through an assessment change. 

3.4 Using Standard Errors to Create Levels of Certainty and Define 
Effectiveness 

In all value-added reporting, EVAAS includes the value-added estimate and its associated standard error. 
This section provides more information regarding standard error and how it is used to define 
effectiveness. 

3.4.1 Using standard errors derived from the models 

As described in the modeling approaches section, each model provides an estimate of growth for a 
district, school, or teacher in a particular subject/grade/year as well as that estimate’s standard error. 
The standard error is a measure of the quantity and quality of student level data included in the 
estimate, such as the number of students and the occurrence of missing data for those students. 
Because measurement error is inherent in any growth or value-added model, the standard error is a 
critical part of the reporting. Taken together, the estimate and standard error provide the educators and 
policymakers with critical information regarding the certainty that students in a district, school, or 
classroom are making decidedly more or less than the expected progress. Taking the standard error into 



account is particularly important for reducing the risk of misclassification (for example, identifying a 
teacher as ineffective when he or she is truly effective) for high-stakes usage of value-added reporting. 

Furthermore, because the MRM and URM models utilize robust statistical approaches as well as 
maximize the use of students’ testing history, they can provide value-added estimates for relatively 
small numbers of students. This allows more teachers, schools, and districts to receive their own value-
added estimates, which is particularly useful to rural communities or small schools. 

The standard error also takes into account that, even among teachers with the same number of 
students, the teachers may have students with very different amounts of prior testing history. Due to 
this variation, the standard errors in a given subject/grade/year could vary significantly among teachers, 
depending on the available data that is associated with their students, and it is another important 
protection for districts, schools, and teachers to incorporate standard errors in the value-added 
reporting. 

3.4.2 Defining effectiveness in terms of standard errors 

Each value-added estimate has an associated standard error, which is a measure of uncertainty that 
depends on the quantity and quality of student data associated with that value-added estimate. 

The standard error can help indicate whether a value-added estimate is significantly different from the 
growth standard. This growth standard is defined in different ways, but it is typically represented as zero 
on the growth scale and considered to be the expected growth. An index value is created that takes the 
growth measure and divides it by the standard error to create a t-value that can be used to discuss 
significance. Since the expectation of growth is zero, this measures the certainty about the difference of 
a growth measure to zero. 

Many districts and schools choose to categorize the index values based on ranges to assist with their 
interpretation. A typical choice includes ranges of below -2, between -2 and -1, between -1 and +1, 
between +1 and +2, and above +2. The distribution of these categories can vary by year/subject/grade. 
There are many reasons this is possible, but overall, it can be shown that there are more measurable 
differences in some subjects and grades compared to others. 



4 EVAAS Projection Model 
In addition to providing value-added modeling, EVAAS provides a variety of additional services including 
projected scores for individual students on tests the students have not yet taken. These tests may 
include state-mandated tests (end-of-grade tests and end-of-course tests where available) as well as 
national tests such as college entrance exams (SAT and ACT). These projections can be used to predict a 
student’s future success (or lack of success) and so may be used to guide counseling and intervention to 
increase students’ likelihood of future success. 

The statistical model that is used as the basis for the projections is, in traditional terminology, an 
analysis of covariance (ANCOVA) model. This model is the same statistical model used in the URM 
methodology applied at the school level described in Section 3.2.2. In this model, the score to be 
projected serves as the response variable (𝑦), the covariates (𝑥’s) are scores on tests the student has 
already taken, and the categorical variable is the school at which the student received instruction in the 
subject/grade/year of the response variable (𝑦). Algebraically, the model can be represented as follows 

for the 𝑖𝑡ℎ
 student. 

𝑦𝑖 =  𝜇𝑦 +  𝛼𝑗 + 𝛽1(𝑥𝑖1 − 𝜇1) + 𝛽2(𝑥𝑖2 − 𝜇2) + ⋯ +  𝜖𝑖  (20) 

The 𝜇 terms are means for the response and the predictor variables. 𝛼𝑗 is the school effect for the 𝑗𝑡ℎ

school, the school attended by the 𝑖𝑡ℎ student. The 𝛽 terms are regression coefficients. Projections to 
the future are made by using this equation with estimates for the unknown parameters (𝜇 ’s, 𝛽’s, 

sometimes 𝛼𝑗). The parameter estimates (denoted with “hats,” e.g., �̂�, �̂�) are obtained using the most 

current data for which response values are available. The resulting projection equation for the 𝑖𝑡ℎ

student is: 

�̂�𝑖 =  �̂�𝑦 ±  �̂�𝑗 + �̂�1(𝑥𝑖1 − �̂�1) + �̂�2(𝑥𝑖2 − �̂�2) + ⋯ + 𝜖𝑖 (21) 

The reason for the ‘±’ before the �̂�𝑗term is that, since the projection is to a future time, the school that 

the student will attend is unknown, so this term is usually omitted from the projections. This is 
equivalent to setting �̂�𝑗 to zero, that is, to assuming the student encounters the “average schooling 

experience” in the future. In some instances, a state or district may prefer to provide a list of feeder 
patterns from which it is possible to determine the most likely school that a student will attend at some 
projected future date. In this case, the �̂�𝑗 term can be included in the projection. 

Two difficulties must be addressed in order to implement the projections. First, not all students will have 
the same set of predictor variables due to missing test scores. Second, because of the school effect in 
the model, the regression coefficients must be pooled-within-school regression coefficients. The 
strategy for dealing with these difficulties is exactly the same as described in Section 3.2.2 using 
equations (16) and (17) and will not be repeated here. 

Once the parameter estimates for the projection equation have been obtained, projections can be made 
for any student with any set of predictor values. However, to protect against bias due to measurement 
error in the predictors, projections are made only for students who have at least three available 
predictor scores. In addition to the projected score itself, the standard error of the projection is 
calculated (𝑆𝐸(�̂�𝑖)). Given a projected score and its standard error, it is possible to calculate the 
probability that a student will reach some specified benchmark of interest (𝑏). Examples are the 
probability of scoring at the proficient (or advanced) level on a future end-of-grade test, or the 
probability of scoring sufficiently well on a college entrance exam to gain admittance into a desired 
program. The probability is calculated as the area above the benchmark cutoff score using a normal 



distribution with its mean equal to the projected score and its standard deviation equal to the standard 
error of the projected score as described below. 𝛷 represents the standard normal cumulative 
distribution function. 

𝑃𝑟𝑜𝑏(�̂�𝑖 ≥ 𝑏) =   𝛷 (
�̂�𝑖 − 𝑏

𝑆𝐸(�̂�𝑖)
) (22)



SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 
registration. Other brand and product names are trademarks of their respective companies. Copyright © 2021, SAS Institute Inc. All rights reserved. 107411_138328.0521

To contact your local SAS office, please visit: sas.com/offices


	2016-page8-revision.pdf
	1 Introduction
	2 Data Requirements
	2.1 Tests used by EVAAS
	2.1.1 Stretch
	2.1.2 Relevance
	2.1.3 Reliability


	3 EVAAS Value-Added Models
	3.1 Multivariate Response Model (MRM)
	3.1.1 MRM at the conceptual level
	3.1.2 Normal curve equivalents
	3.1.2.1 Why EVAAS uses normal curve equivalents in MRM
	3.1.2.3 How EVAAS models use normal curve equivalents in MRM

	3.1.3 Technical description of the linear mixed model and the MRM
	3.1.3.1 District and school level
	3.1.3.2 Teacher-level


	3.2 Univariate Response Model (URM)
	3.2.1 URM at the conceptual level
	3.2.2 Technical description of the district, school and teacher models

	3.3 Growth Expectations in Value-added Analyses
	3.3.1 Base year approach
	3.3.1.1 Description
	3.3.1.2 Illustrated example

	3.3.2 Intra-year approach
	3.3.2.1 Description
	3.3.2.2 Illustrated example

	3.3.3 Defining the expectation of growth during an assessment change

	3.4 Using Standard Errors to Create Levels of Certainty and Define Effectiveness
	3.4.1 Using standard errors derived from the models
	3.4.2 Defining effectiveness in terms of standard errors


	4 EVAAS Projection Model




